Analysis of the Effects of Elitism on Bloat in Linear and Tree-based Genetic Programming

نویسندگان

  • Riccardo Poli
  • Nicholas F. McPhee
  • Leonardo Vanneschi
چکیده

Elitism, a technique which consists of copying, unchanged, one or more of the most fit individuals from one generation to the next, is widely used in generational evolutionary algorithms, including Genetic Programming (GP). Elitism ensures that the best individuals discovered in a generation (and hence in the whole run) are not lost, and, perhaps even more importantly, are made available to new generations for possible further improvements. In a recent study on the evolution of robustness in GP the average size of best of run individuals was reported to grow more slowly in the presence of elitism. This is an important finding, but no explanation was provided for why this happened nor whether this was a general effect. In this paper we model elitism mathematically and explain how, in general, elitism modulates the dynamics of the mean program size of the population, including both its positive and negative effects on bloat. Experimental results with two GP systems and four different problems corroborate the theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Mutation Operator in Genetic Programming

This paper proposes a new type of mutation operator, FEDS (Fitness, Elitism, Depth, and Size) mutation in genetic programming. The concept behind the new mutation operator is inspired from already introduced FEDS crossover operator to handle the problem of code bloating. FEDS mutation operates by using local elitism replacement in combination with depth limit and size of the trees to reduce blo...

متن کامل

A Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm

In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...

متن کامل

Pareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times

This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...

متن کامل

A Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study

A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...

متن کامل

Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach

 In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008